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Abstract

Conformal arrays are popular antennas for aircraft and missile
platforms due to their inherent low weight and drag properties. How-
ever. to date there has been a dearth of rigorous analytical or nu-
merical solutions to aid the designer. In fact, it has been common
practice to use limited measurements and planar approximations in
designing such non-planar antennas. In this report, we extend the fi-
nite element-boundary integral method to scattering and radiation by
cavity-backed structures in an infinite,metallic cylinder. In particular,
we discuss the formulation specifics such as weight functions, dyadic
Green’s function, implementation details and particular difficulties in-
herent to cylindrical structures. Special care is taken to ensure that
the resulting computer program has low memory demand and mini-
mal computational requirements. In this report, both scattering and
radiation parameters are computed and validated as much as possible.
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1 Introduction

Conformal antenna arrays are attractive for aircraft. spacecraft. and land ve-
hicle applications since these systems possess low weight, flexibility. and cost
advantages over conventional protruding antennas. The majority of previous
studies in non-planar conformal antennas has been conducted experimentally
due to a lack of rigorous analysis techniques. Some approximate analyses
have been considered but these are restricted in accuracy and element shape.

Recently. the finite element-boundary integral (FEM-BI) method was
successfully employed for the analysis of large cavity-backed planar arrays
[1]. The resulting system is sparse due to the local nature of the finite ele-
ment method whereas the boundary integral sub-matrix is fully populated.
However. by resorting to an iterative solver such as the Biconjugate Gradi-
ent (BiCG) method, the boundary integral system may be cast in circulant
form allowing the use of the Fast Fourier Transform (FFT) in performing
the matrix-vector products. This BiCG-FFT solution scheme ensures O(N)
memory demand for the entire FEM-BI system and minimizes the computa-
tional requirements.

In this report we extend the FEM-BI formulation to aperture antennas
conformal to a cylindrical metallic surface. Both the radiation and scatter-
ing problems will be developed in the context of the FEM-BI method. In
contrast to the planar aperture array, the implementation of the cylindrically
conformal array requires shell-shaped elements rather than bricks, and the
required external Green's function must satisfy the boundary conditions on
the cylinder. In its exact form, this Green’s function is an infinite series which
imposes unacceptable computational burden on the method. However, for
large radius cylinders, suitable asymptotic formula are available and herein
used for an efficient evaluation of the Green’s function. In addition, the
resulting Bl system is again cast in circulant form to ensure an O(N) mem-
ory demand and take advantage of the FFT’s speed when carrying out the
matrix-vector product.

At the end of this report, we also present computations of the relevant
antenna and scattering parameters validated with available known results.
One of the most interesting applications of the numerical laboratory devel-
oped in this project will be the ability to study curvature effects of real world
antenna systems in an exact manner. Such studies will be pursued in the
near future and the will be addressed in a future report.



2 FEMS-BI for Circular Cylinders

Consider a cavity recessed in an ‘nfinite.metallic cylinder. shown in figure 1.
The cavity walls are assumed to coincide with constant p-. o- and z-surfaces
and the cavity is assumed to be filled with inhomogeneous material. Interior
sources and lumped loads may be present as well as surface metallization
patterns and resistive cards.

The FEM-BI technique [1] permits determination of the electric field
within the cavity which are induced by either interior or exterior sources. The
system of equatious associated with the FEM formulation is sparse whereas
the boundary integral sub-matrix is usually fully populated. However, with
a judicious choice of boundary elements, the formulation will maintain O(N)
memory demand when coupled with a Biconjugate Gradient-Fast Fourier
Transform (BiCG-FFT) solver. Upon determination of the fields, the radi-
ated and scattered patterns are readily calculated from the aperture fields
while the input impedance. S-parameters and other pertinent antenna quan-
tities may be computed from the appropriate interior fields.

The FEM-BI system is developed directly from the inhomogeneous vector
wave equation and a complete presentation of the derivation is given by
Volakis et al. [2]. The resulting system is

/ {v x W;lp,$,2) - V x Wi(p, ,2)
Vi pe(p 8, 2)

—kzef(p’ (15,2)"{/’]'([), ¢73) : ‘T/t(pw ¢D,Z)}pdpd¢d:
Hka)28a(0)6a00) [, [ [Wila.6,2) - fla.6.2)x

(@ d.3) x playd2) Wyla, ¢, 2)]| d¢ d='dpdz = fi** + £ (1)

Qll

where Wi(p. ¢, 2) are edge-based expansion functions where support is over
the volume V: and G2(a, ¢,2) is the pertinent dyadic Green's function. The
free-space wavenumber is denoted by k, = -i—:, the cylinder has radius a
whereas €, and pu, are the relative constitutive parameters of the material
filled cavity. Also V; represents the :t* integration volume which extends
over the support of D-Vi(p, ¢,z) and in a similar fashion S; and S; indicate
surface integration over all aperture elements which extend over the support
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Figure 1: Illustration of the cavity geometry situated on a metallic cylinder
(a) Coordinate system (b) Typical cavity-backed antenna.



of the it" (test) and j** source basis functions. respectively. The function
&.(1)64(7) is a product of two Kronecker functions and it simply indicates
that the boundary integral only contributes when both the test and source
unknowns are on the aperture. We remark that the dyadic Green’s function
is convolutional (0 = 0 — 0.7 =z—z) and will be discussed later along
with the functionals f™ and ff** which depend on the interior and exterior
excitations. respectively. Rather, we shall first proceed with a presentation
of the appropriate weight functions and the evaluation of the FEM matrix
entries which are represented by A;; in the FEM-BI matrix system

[ A] %53"’} +[[g1 [01] {E7Y _ e ’

gy TN 0] (e} T

to be solved via the BiCG method.

o
~—

2.1 Vector Weight Functions

Traditional node-based finite elements associate the degrees of freedom (E};)
with the nodal fields. These elements impose both tangential and normal
field continuity along inter-element boundaries even at material boundaries
(3]. These elements also do not correctly model the null space of the curl
operator and as a result spurious solutions are generated [3] which are typ-
ically suppressed by imposing a penalty function {4]. Edge-based elements,
where the unknowns are associated with the free edges of the mesh, do not
enforce normal field continuity (although tangential continuity is still main-
tained) and are therefore more suitable for electromagnetics applications. In
addition, edge-based elements avoid explicit specification of the fields at ge-
ometry corners where the field may be singular [5). Two popular volume
elements are the brick [5] and the tetrahedron [6, 7] which are readily mated
with rectangular and triangular surface elements, respectively. The brick is
well-suited for geometries delimited by constant x- , y- and z-planes in the
Cartesian system while the tetrahedra are more versatile (and consequently
more complex). For cavities residing in a circular cylinder it is advantageous
to employ the cylindrical shell element.

Cylindrical shell elements, which are defined by constant p-, ¢- and z-
surfaces, are superbly suited for cavities recessed in a circular cylinder since



they possess both geometrical fidelity as well as simplicity. These shell ele-
ments are analogous to the bricks used by Jin and Volakis [5] and belong in
the general class of curvilinear brick elements. Figure 2 illustrates a typical
shell element which has eight nodes and twelve edges: four cdges aligned
along each of the three orthogonal directions of the cylindrical coordinate
svstem. The edge-based weight functions for these elements must satisfy the

following properties:

1. subdomain (finite element)

‘th

2 W(p.o.z)|=0 il (p.o,z) € any edge # j and || " edge

3. V-1 (p.o.z) =0

Such expansion/weight functions can be represented as

— -

pooziion s ), Wialpoo.z)=Wipoo 2zt 0n 2 —)
'p(p*¢w:;'-0rw:b1_)v ””'87(pa(p':) ”rp(Pst :'w(blq:b,+)

I
e

‘TYH(IL 0.3) =1 ch(P- ¢v 23 Pbs '-:t~+)w Li’."2~'3(ps ¢w:) = ‘T/di(p- ¢w:;/’a~ s Tty —')
Wis(p,0,2) = Wolp, 0.2 0600y 25, =), Wer(p 8,2) = We(p, 6. 25 pass 25, +)

”‘vl-"(p* @:) = ﬁ:(ﬂ» (bs:lpb, (pr»'-+)‘ "-I;’Qﬁ(pa (D,Z) =1 z(P»@-C?Pm ¢n'~‘)

l'_""'48(p< o~:) = “it':(pa ¢s:;pbv¢15's_)s LVS?(P’ Q, Z) = L z(P~ ¢~ 21 Pas éls" +)
(3)

where W, denote the edge which is defined by local nodes (l,k) as shown
in figure 2. That is three fundamental vector functions are required for the
complete representation of the edge-based cylindrical shell element. They

are given by

- §ps (0 — 0)(z — ),
Wo(p.0,2,p,0,2,3) = ﬁ( p( p

1W,(p, @, =) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not
divergenceless at element interfaces. This is required since these elements do not guarantee
normal field continuity across the element faces.



Figure 2: Cylindrical shell element.



Wolpoo.zipo.28) = —(p—p)z=3)o
th
Wilp.ozipoo.2.3) = alp—pilo=0): (1)

where t = p, — p,. @ = 0, — 0/, and h = z, — 2, and the element parameters
(P2 pbs @1, 0p. 2p. 2¢) are shown in figure 2. We remark that the i term which
appears in the definition of the p-directed weight is essential in satisfving the
divergenceless property of the edge-based expansions. Of course, for very
large radius cylinders and small elements, the curvature of these cylindrical
shell elements decreases resulting in weight vectors which are functionally
similar to the bricks used by Jin and Volakis [5).

2.2 FEM Matrix

The inherent locality of a partial differential equation formulation such as
the FEM suggests that [A] is sparse. This FEM matrix results from the
discretization of the first two integrals of (1) and owing to the finite support
of the basis functions its entries are identically zero unless both the test and
source edges are within an element. These matrix entries can be represented
as

Ay = 109 _ g3, [P (5)
where we have assumed constant material properties within an element (€r
and g, ) and the subscripts (i,j) refer to the row and column of the [A] matrix,
respectively. The two auxiliary functions are defined by

JREa- /‘ V x W,(p, .21 5j, 85155, 3;) -
V x Wi(p. 9, 23 piy &y 00 3:)p dp d dz
= I;{/J(p7 ¢a:;[)11éj15j7'§j) : I/-‘:'!(ps ¢’ Z;ﬁis&iusiasi)pdpqud: (6)

Vi

L
where (s,t) € {p,¢,2} indicate the direction of the source and test edges,
respectively. Since the fundamental weight vectors (4) are aligned along
orthogonal directions, (6) is symmetric with respect to the source and test
edges (e.g. IV = I,(,I)ij), and thus, only six combinations of (s,t) for 7(t)
need be determined and only three such combinations are required for 7(?).
They are
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= S5t ['2 1 £
° (ah)? polt il Pa

(1) ___SsSt Ps - [ _ P i\~ i~
Lo = —7m {Zpbln(;‘- +Pt(1 pa)l/u, (2= Z)(z = 2)dz

3,3 or .
1 = =2 (e 06 - ddo

(8 -]
o= 2 [h (l (nf—p2) + Lpet i (02— a) + Lo (r? - pz)) +
o = (thE L \4 A : 2 °
. . . o~ P i - -
(2 (9 = p2) = 2t (fs + po) + Poln (p—"))/ (z—:,)(z—:t)dz]
a 2b

3.8 [Pe . .

Y = - t.zt/ (p— ps)p — pe)dp
Pa

Sg8ch 1 ) ) o oy
[(1_) = _’_t_[ 22— ) —t(h, o (2
zz (f0)2 « 2 (pb pa) (P + Pg) + pspein p +

9 = %?f)hi[i (ot - p2) + % (s + ) (62— 52) + %f’sﬁt (ot - pﬁ)] x
/:'(c,b—é,)w—é,)dqs (7)

where each of the unevaluated integrals are of the form

/LU (€-&) (e—é:)d&%(ﬁ—v?) (& +&) +-15(U3—L3) +&& (U - L)
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The [A] matrix is assemble(l l)\ evaluating (3) for each element combination
which contain the ** and j* unknowns. Siunce the integrals (6) are syvm-
metric. only the upper triangle or lower triangle of the FEM matrix need be
stored.

2.3 Boundary Integral Matrix

The entries of the boundary integral sub-matrix, [G], couple the interior
fields of the FEM system and any external impressed fields. In addition. the
boundary integral provides an exact boundary condition for mesh closure.

The entries of [G] are

G, = (koa)‘/ Wold. 0.2 i 03 51, 84) -
b]

= - ’ ]

[ﬁ((z.o.:) X Gyla,0.%) x pla,o.z)

Wila 02" 55,0, 3,.5,)do d='do d= (9)

and we note that the global nature of the Green's function implies a fully
populated sub-matrix (e.g. all boundary unknowns couple to all the other
boundary unknowns). The surface weight functions in (9) are the volume
weight functions (3) collapsed down to a cylindrical- rectangular patch on the

surface of the cylinder, p = a. The dyadic Green’s function Ga(a, é,3) is of
the second kind and it satisfies the Neumann boundary condition

p XV x Gala, %) = 0. (10)

on the cylinder’s surface as well as the Sommerfeld radiation condition. It
can be expressed component-wise as

Gala.0,%) = 06'G*(a.6.2) + [¢2 + 26| G*(a,6,2) + 5267 (. 8, 2)
(11)
where the unprimed unit vectors are functions of the test point (a,$,z) and

the primed unit vectors are functions of the source point (a,0,z'). The
components may be exactly expressed as an angular eigenvalue series (8]

- (2) o
G*(a.9:2) =~ Zf () 1 Hf ())em_k,z)d,cz

x4 n=—oo 7 H'(2)(

12



tn

_ < x . (2} - o B

(2r)? = J-x \K2ay ) HAP(h)
’ o 1 x ~ 1 H;(?)(A,) nk. : H{®(+) (nd—k:3)
G*°(0.0.2) = 3 2 /-ﬁ{mf’m) “\kar) mo) "

However, for large radius cylinders, (12) is computationally prohibitive.
Instead, it is advantageous to employ one of the available asymptotic approx-
‘mations of Ga(a. . %) (9, 10. 11, 12]. These approximations improve as the
cvlinder radius and the geodesic distance between the source and observation
point increase. Since each approximation invokes Watson's transformation,
thus converting the angular eigenvalue series of (12) into a creeping wave se-
ries. the geodesic or on-surface ray parameters are necessary in describing the
‘nteraction between surface fields. The formula due to Pathak and Wang [9]
have proven most accurate for our applications since the regions where Bird’s
formula [12] and Boersma and Lee's expressions [10] are superior (paraxial
and far-zone) correspond to situations where coupling is small. In addition,
we shall find it necessary to employ a regularization process to correct for
errors in computing the near region (s — 0) and to also allow evaluation
of the singular integrand as (o, z) — (¢',z ) which mitigates any advantage
that the more complex formula have with respect to Pathak’s expressions in
the near-zone. Using a uniform expansion of the Hankel functions in (12)
and a frst-order evaluation of the axial wavenumber integral, Pathak found
that

G*(a,0,3) ~ —]Loqe_ﬂ“’{ (c0329 +q(l —g)(2— 360829)) v(ﬂ)}

2r

G%(a,0.3) ~ Z—k—oqe’jk"’sinGcosG{(1—3(1(1—q))v(;.?)}

2r

G*(a,0,3) ~ —'Zlcﬁqe'jk“{ (sin20 +q(1—¢q)(2 - 3sin29)) v(B)

2r
+q [secd (u(B) - v(B))] }
(13)

2
where 3 = ks [-\%’:—i] * and the geodesic parameters are given by

13
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-
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I. Geodesic path length (s =/(ad) + :'-)

2. Geodesic trajectory (0 = tan~! [ “fi’)D

3. Approximation order (q = —J—)

kos

where ® = o or & = 27 — ¢ depending on which of the two direct paths
illustrated in figure 3 (the short or long) is used. In (13). u(.3) and vt (3)
represent the soft and hard surface Fock functions, respectivelv. These func-
tions are characteristic of the creeping waves on a circular cvlinder and are
discussed in detail by Logan [14] along with their evaluation.

As stated previously, a regularization process is necessary for the accurate
evaluation of (9) especially when the source point and test point coalesce.
Bird has shown [12] that Pathak's approximation (13) reduces to the metallic
screen Green's function, 2G,(a. 9. 7), modulated by v(8) within the available
order (O(¢~?)). This suggests a regularization procedure where the metallic
screen Green's function is subtracted from the cylindrical Green's function.
thus rendering it non-singular, followed by an addition of the planar contri-
bution. The non-singular Green's function is given by

.. - ke,
G.'-(as 0-5) ~ _J

2

qe"“’{ (cos0 + g(1 — ¢)(2 = 3c0s20)) [v(3) - ”}

ty

X ) T
G®(a,0.Z) ~ {)—T:qe_Jk”s sin 8 cos 0{ (1 =3¢(1 —q))[v(B) - 1]}

-

Y (a,0,5) ~ -{)’jﬁal"o’{ (sin0 + q(1 - ¢)(2 - 3sin*0)) [v(8) — 1]

+4 [sec®t (u(B) = v(B)) }
(14)

and this asymptotic form of the Green’s function is used for all short path
contributions whereas (13) is used for the long path contribution in which
case curvature effects are expected to be prominent. When the regularized
integrand is used, the contribution of the planar Green’s function

G = ke [ [ Wila 002550 iy 2,50)-
s Js,

14



geodesic
paths

Figure 3: Geodesic paths on a circular cylinder.
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[ﬁ(({.o.:) X io(a.é.fj x ﬁ(a,o’.:’)J

T ’ ’

Wila 0.2 p,.0,.%,.5,)do d="do d= (15)
where T sk
Gola.0.5) = [7+ o }(4”{ (16)
is added to (14)
G, = G,+GF (17)

which is used instead of (9) with R = s and T = rT+yy+ 23 Upon use of a
common vector identity and the divergence theorem [4], we obtain from (15)

koa)? —y Lo .=
Gy = ( )//5 Wila. 0.2 piy 00, 3,,80) - T

2%

MWila.0' 2" ). 0,,2,.5,)dé’ d='do d=

(12 . =, . . . .
2 / / ; '[f’(“'@~~") X ”"z(a,o,:;pi,aﬁg,:;,SiJ]
2 Js, Js,

e—]kR

-

V- [pla 0. 2) x Wila.0'5":4,.0,.5,.3,)] do' d='dé dz

(18)

and this form of the boundary integral may be readily evaluated even as R
vanishes by employing the regularization procedure used by Jin and Volakis
[4]. We note that v(8) — 1 as a — oo and hence the regularized integrand
(14) vanishes leaving only the planar contribution (18). With the specifica-
tion of both the FEM matrix, [A], and the boundary integral sub-matrix,
[G], the unknown fields can be determined for a given excitation. In the next
section, explicit evaluations of the excitation functions appropriate for plane
wave scattering and probe-fed antenna applications are given.

3 Excitation

Two sources of electromagnetic fields are considered: external sources (plane
waves) for scattering analysis and internal sources (probe-feed) for antenna

16



parameter calculations. The use of the exact boundary condition in (1)
allows the coupling of an exterior excitation field into the cavity while the
FEM formulation itself {2] readily permits modeling of interior sources. In
this section we describe the form of the source functionals f&*' and f;™ along
with their numerical implementation.

The forcing functional. f{** due to exterior sources is given by

F“=jzww/'Wuwd:v~mmdavxiﬁﬂmmiiwddz (19)
S,

where ﬁ}(p. 0. z) is the testing vector for the !
represents is the magnetic field on the cylinder’s surface in the absence of

th row of the matrix and Hev!

the cavity. For plane wave incidence

Er = €e
e . . TS
A o= Yk x ée
= Y, [p' sin = cos f; — o' cosy — Zsin~sin; gikolpsiné. cos (0=01)+ cosbi]

(20)

where (Gi,ﬂo,-) indicate the direction of incidence, v is the polarization angle
and é = 'cos v + ¢'siny. The total surface field is given by

F¥(a.0.z) = Hi{a.0.2)+ Hyla,0.2) (21)

with

H ' sl in(Z+o—d)

, s SINY ko costy: pint
fy‘(a’@,:) = 12} 2 pikocosbiz Z [ ’ ]
E: 07!'1\"00, Hﬂ(?)(koa sin 9')

jko cos iz o
eyl - s € cos v
HY(a,6,2) = —2Wom—opg 2 [ g

rhoasind; = (k,asiné;)

) n sin v cos 0; A (E 4
ITo 12) z : ]em(,w > (22)
k,asin8; H, ' (k,asinb;)

n=-02o0

These expressions may be computed by summing only a few terms of the
series if k,asin®; is small. However, as this parameter becomes large (e.g.
for large a and 8; — 90°), (22) may be replaced with equivalent asymp-
totic representations similar to those considered earlier. Utilizing Watson'’s

17



transformation and Fock theory [13] in connection with (22). we find that

3

[/;‘yt —~ _}o sin ~ sin O,CJk" cosd, 2 Z 6-]&-,):151115.4),, [g(()j( ”I(b,,,)]

p=1

2 2
i o m . R . =
H;y ~ JB}O oS v : e_]k,) cos 8, § :C Jkoasind, &, [f(())“nq)p)]
ko asin o

2
_}O sin‘) cos 0,611“’“’59': Z(_l)pe—_]koasm@,Q,, [{/(U)("?(I’p)
p=1

g(”(md)p)J (23)

m
JT——
k,asin d,

1
in which ¢, = 321 —(o-0o),P2=(0-0i)—~ 3. m= {E&ZM]‘ and the ™’
svmbol indicates complex conjugation. The appropriate Fock functions are

[14]7

() J! e’
= = [ ——dt

918 v Jrwi(t)

J'l ej{t

e = 2o dt (24)
\/—71T rw(t)
where w(t) and its derivative w;(¢) denote the Airy functions and the inte-
gration contour is given by Logan [14].
The asymptotic formulas (23) are quite accurate except when ¢ & ;. In
this region. Goriainov's [15] expressions

]I‘fyl ~ —Y,sinasin oz_ejk,, cosﬂ,:{e—Jkoasin 6,9, [g(o)(m(b, )] -

+ejkoasin0. cos (p—¢,) [G(—m cos (0 _ o‘))]- }

m?

Hcyl ~ ,]2},0 cos a ejkocosﬂ,z{e—jkoa sin 6,9, [f(o)(rnq)1 )] .

k,asin8;

+ejkoasin0, cos (op—¢,) {F(—m COS(O _ ¢‘))]- }

“Logan [14] uses the e=/“* time dependency in the definition of these functions requiring
the complex conjugation in (23)
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+Y, sina cos 0,¢7% o {C_Jk“a e {9(0)('”(1)1 )

m

i (1) (p]
JkoasinO,g (m@1)

_glkoasindicos(@=01) [G(—m cos (0 — ¢i))

AL U T s — o] 95
JlsoasinO,-C (=m cos(o O')]} (23)
with [14]

e = gt

FOE) = fOE)es (26)

Lhave been found to be more accurate and can be used instead of (23).

These surface field expressions may now be used to efficiently calculate
the entries of the column vector { f£*'} via a numerical evaluation of (19). In
particular, the modal series (22) is used when k,asin8; < 10 and either (23)
or (25) for k,asind, > 10 as appropriate.

Conformal antenna patches are typically fed by a microstrip line printed
along with the radiator on the surface of the substrate The microstrip lines
are in turn fed by a coaxial probe which originates behind the cavity as shown
in figure 4. The patch may also be fed directly by the coax feed or through
some form of aperture coupling. Nevertheless, the principal excitation for
the system is given by

) A?int 0,2 ) - -
f:nt = —/’ v X ——(_eﬁ—) +JkoZo']'nt(pa¢sz) : "‘/i(pﬂ ¢,Z)pdpd¢d2
v, #r(ps 8, 2)
(27)

where Jt and M™ are the impressed electric or magnetic current densities
representing the sources. For a radially (p) directed probe feed, the impressed
monopole current located at (s, z,) is given by

j?-,u — ;5106(¢ - ¢ap) (Z - 33)

(28)
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which results in an excitation function (27)

o= —jkOZgloii/;lbl In (%) (00 = 0:) (=, = 2] (29)

With both tvpes of excitation and the FEM-BI matrix now specified. the
BiC'G method may be used to determine the unknown electric fields within
the cavity.

4 System Solution

The FEM-BI system (2) may be solved using one of the popular direct meth-
ods such as Gauss-Jordan elimination, Gaussian elimination and LU decom-
position. Alternatively an iterative methods such as Hotelling’s method,
conjugate gradient method or the biconjugate gradient method may be used.
We have chosen to use the symmetric form of the BiCG solver because it
requires much less memory than a direct method and more importantly it
can be implemented in a manner which is computationally efficient (utilizing
only one matrix-vector product per iteration). Although use of an iterative
method such as the BiCG method can require more wallclock time than a
divect solver when multiple right-hand sides are considered (such as is the
case with backscatter calculations), memory demand was deemed the most
critical and expensive resource. The BiCG algorithm is given in Appendix
A and the efficient FFT-based calculation of the boundary integral matrix-
vector product is discussed in Appendix B. In this section, we will present
details of this iterative solver specific to this application.

The BiCG algorithm requires one matrix-vector product per iteration as
shown in Appendix A. This operation represents the bulk of the computa-
tional demand of the method and requires O(N?) complex operations in the
case of non-symmetric matrices. The matrix-vector product is carried out by
executing the sum

N
yln] = [Al{z}= > Aln,nlz[n'] n=1,2,3,..,N (30)

n'=1

and if the matrix is sparse, a storage scheme such as the Compressed Sparse
Row (CSR) format may be used to reduce both the memory demand and
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computational load. Using the C'SR scheme. (30) can be rewritten as

7[n]
ylnj = [Al{e} =3 Aleln.naln] n=1.2.3... N (31)

1
n =1

where r[n] is the number of non-zero entries per row of the matrix and e[n.n]
indicates which entry of the long data vector, A. is associated with the matrix
entry A[n.n’]. The FEM matrix, [A4] in (2) is such a sparse matrix. Although
additional memory savings are possible since the FEM matrix is symmetric
(thus only upper triangle of the matrix need be stored). experience has shown
that use of a symmetric matrix-vector product leads to a severe performance
degradation on vector computers (such as a CRAY) due to the resulting short
vector lengths. Therefore. the entire sparse FEM matrix is stored and used
in the product so that the code’s performance is maximized when executed
on vector architectures.

The boundary integral matrix-vector product involves the fully populated
matrix, [G]. If uniform surface elements are used in the discretization, this
matrix-vector product may be expressed as a truncated.discrete.linear con-
volution and thus amenable to efficient calculation using the Fast Fourier
Transform (FFT). Although uniform zoning imposes restrictions on the ge-
ometries which can be analyzed by this FEM-BI technique, the resulting
memory and computational efficiencies have proven to be well worth the
sacrifice.  The boundary integral product is implemented as described in
Appendix B with the following problem specific exception. The cross-term
arrays do not possess the property: Gy.[m—m',n— n'l = Gee[m' —=m,n' — n|
and hence the periodic replication rule (B-38) cannot be used here. In-
stead. a different replication rule was developed in performing the discrete
convolution. The resulting code has proven robust even for large arrays. In
addition, the cross-term replication rule must be changed for wraparound
arrays since the cavity discretization is fundamentally different than is the
case for cylindrical-rectangular cavities. We note that these replication rules
are not unique and are implementation dependent. The resulting replication
rules used in this project are given as Fortran code in Appendix C.

N
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5 Scattering and Radiation

Once the cavity aperture and volume electric fields have been determined for
either an external excitation (scattering) or an internal excitation (radiation),
several engineering quantities may be calculated. The aperture fields may
be used to determine the Radar Cross Section (RCS) for scattering or the
radiated fields for antennas. This entails the convolution of the aperture fields
with an appropriate Green'’s function. In addition, the input impedance may
be calculated by using the interior cavity fields. In this section we will present
the relevant formula for calculating the far-zone radiated /scattered fields and
the input impedance from the electric fields.

5.1 Far-field Evaluation

Two of the most important applications of the presented formulation deal
with the calculation of the cavity’s RCS and the radiation pattern due to
sources placed within or on the aperture of the cavity.

We begin with the integral representation of the scattered magnetic field
in terms of the aperture fields. We have,

i (r.0,8) = jy;koa/:éz(r,o,¢;a,¢‘,z’) -
[pa.¢'2") x E(a,8,2")] g’ d= (32)
with (r,0.¢) indicating the observation point in spherical coordinates. When

the observation point is very far from the cylinder, the dyadic Green'’s func-
tion in (32) can be replaced by its far-zone representation

—jkor

ﬁ2(rﬂ 07 ¢;a$ ¢"z’) ~ z

— (G766 + G0 + G**6¢ | (33)
T

where the unprimed unit vectors are functions of the observation position and
primed ones are functions of the integration point in (32). The components of
this far-zone Green's function are determined by a mode matching procedure

giving

5%~ j_ 2k,cosd ejkocosoz' i n ejn(§+(¢-¢'))
(27)? (k,asin6)? e HiP (k,asin6)
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GoP  ~ — . elkocosés :
(27)2asind ngx P (k. asin 0)

CJ”(%#’(C"—'-'"H

ein(3+lo=c)) (34)

As one might expect, these series converge rather slowly for large k,asiné.
They must therefore be recast in another form by employing \Watson's trans-
formation and Fock theory as described before. We have,

2

k,costf) . ko i m )
C’v(?o ~ GJAQC(»SG- Z(_I)Pe—}koﬂsme(bl [ (0)(17)(D ) _—9(1)("1(1))
. = l\ sasinf
. H ’ 2 -
9 _AoSlngejkocnsﬂz Ze—jkqasinﬁ‘bp [g(O)(Tn(I)p)J
47? p=1
oo m? ko cos 8z : —jkoasin 0%, [ £(0) i} 5
R vy MNP DL [ me,)] (33)
s p=1

W here the appropriate Fock functions are given by (24). As expected, when
o = o, the formulas attributed to Goriainov [15]

(1)(mq) )]‘ —

)—]l\ asmOg

k,cost ., K o
G&rt) ~ ] e)kocos& e—]LoasmGd)l [J(O) m‘b
n

. i cos (op— ! ' ! ] m / ) -
Ejkodsma (0-0 ) [G(O)(_7n COS(¢ —0 )) — ]mG(l)(_m CcOos (¢ -9 ))] }
o= k,sin 6 ikocos 0z |  —jkoasin8® (0} )
oo . glkocosbz | —jko ! [g (m‘bl)] +
ir
el koasinfcos(s-0 ) [G(O)(—m cos (¢ — ¢>'))]- }
m? N ’, L -
Go° A ~)a7rsin()e“°coso- {e—JkoasmG% [f(‘“(m(bl)] +

e}koasinecos(nﬁ—tb’) [F(O)(_m cos (¢ — ¢:))}' } (36)

are more useful. The far-zone scattered or radiated field can be computed
numerically by using either (34),(35), or (36) in (32).
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For the scattering problem, the RCS is most often the quantity of interest.
This is given by
i*(r,0
o(f,0) = lim 47."2l—_—(7——M (37)
r—2% l[l((,..

QO
0.0)|
Alternatively. the antenna gain may be computed from the far-zone fields as

r
AC"I

)ziE'(o,mlz} +1010g,, | Ao | 68)

Gasl0.0) = 10logyo [in ( T

where A is the wavelength in centimeters, R,, is the input resistance which
is given in the next section and E™ is the radiated electric field as r — oo.
For comparison with other techniques which define the RCS in terms of the
electric field instead of the magnetic field in (37). these two fields may be
related by

E, = —Z,Hp
Ey = Z.H, (39)

in the far-zone. This must be considered when referring to the polarization
of an incident or scattered field.

5.2 Input Impedance

In addition to the antenna pattern and gain, designers are concerned with
the input impedance of an antenna for feedline matching purposes. The
FEM approach allows the calculation of the input impedance of the radiating
structure in a rather eloquent manner. The input impedance is comprised of
two contributions [19]

Zn = Zp+2Zp (40)

where the first term is the probe’s self-impedance which is the impedance (
e.g. the probe’s impedance in the absence of the patch) and the second term
is the contribution of the patch current to the total input impedance. The
probe self-impedance accounts for the finite radius of the probe and hence is



omitted when a zero-thickness probe is assumed. Ignoring the probe-feed's
self impedance. we have [19]

, ] - -
7 = _F/y E(p.o.2)- J"(p.o. =) pdpdod- (41)

where the impressed current is given by (28), V; refers to the volume elements
containing the probe-feed, the electric field is the interior field associated with
the feed edge and I, is the constant current impressed on the probe. Utilizing
(4) and (28) into (41) vields

z, = -, (?) (00 = 3) (20— 2] (42)

which must be summed over the four radial edges of the element which con-
tains the feed.

6 Validation

Having developed the FEM-BI formulation for cavities recessed in an infi-
nite.metallic cylinder and having implemented the technique in a manner
which has low computational and storage demand, a essential task is the val-
idation of the written computer code. Unfortunately, although their is much
interest in the scattering and radiation characteristics of conformal patch
arrays, a survey of the literature indicates a dearth of published data. We
are currently awaiting measured data pertaining to a four-patch wraparound
antenna mounted on a low observable test structure which is illustrated in
figure 5. Until that data is available, we must resort to limited validation
which either considers quasi-planar configurations or curve patches excited
by a normally incident plane wave. We shall now look at such preliminary
validation of the code.

6.1 Scattering

The first validation effort for scattering by cavity-backed patch antennas
relies on the fact that a small patch on a very large radius cylinder is quasi-
planar and approximates rather well an equal sized planar patch. For our
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test we chose as a reference a planar 1.443" x 1.083" patch residing on a
239" x 2.10" x 0.057" cavity filled with a diclectric having ¢, = 4. The
equivalent patch on a 10A cylinder is 6.46° = 1.083" residing on a 12.90° x
2,107 x 0.057" cavity. Figure 6 compares this work with the planar result
computed using a similar FEM-BI code for cavity-backed antennas recessed
in a groundplane. Although figure 6 illustrates only monostatic scattering in
the § = 90” plane. additional runs for normally incident monostatic scattering
and various bistatic situations vield similar agreement.

Comparisons may also be made for elongated cavities and 2-D MoM re-
sults. Long narrow cavities have verv little axial interaction for principal
plane (8§ = 90°) excitation and therefore results based on this formulation
should compare well with corresponding 2-D data. It is well known, that the
RCS of the 3-D scatterer of length L > A, is related to the corresponding
2-D scattering of the same cross section via the relation

[\2
g3p = 2 (—) 2p72) (43)
Ao

Such a comparison is shown in figure 7 for monostatic scattering by a 45° x
5A x 0.1 cavity for both principal polarizations. Once again the agreement
between the two results is excellent. thus providing a partial validation of the
new code for highly curved geometries. We remark that similar agreement

has been observed for bistatic scattering in the § = 90° plane.
The planar approximation eliminates the effects of curvature, which is
a primary interest in this work, and the 2-D comparisons done above are
only valid for normal incidence. To consider oblique incidence on a highly
curved structure, we resort to comparisons with a Body of Revolution (BOR)
code for wraparound cavities. Since the BOR code can only model finite
structures. we simulate an infinite cylinder by coherently subtracting the far-
zone fields of the finite structure without a cavity from similar data which
includes the cavity. This process is illustrated in figure 8. This procedure is
suitable for near normal incidence and was found acceptable for near grazing
incidence as well in the case of H-polarization (a = 90°) case shown in figure
9 where the data is taken for bistatic scattering in the ¢ = 0° plane due to

plane wave incidence at ; = 90° and ¢; = 0°, '

Although the agreements with the results presented above give us con-
fidence that our implementation yields accurate data, agreement with mea-
sured data of the geometry shown in figure 5 would provide a more secure
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Figure 6: Comparison of a planar patch (1.488" x 1.083") residing on a
589" x 2.10" x 0.059" cavity which is filled with ¢, = 4 dielectric and a

quasi-planar patch on a 10 cylinder.
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validation. The test body is a twelve inch long metallic cylinder with a radius
of six inches. The cvlinder is terminated with 53° ogival end-caps which min-
iimizes the scattering by the terminations (tips). The wraparound cavity is
2" «0.16" and four identical metallic patches are symmetrically place around
the cvlinder where each patch is 1.047" x 0.69".

6.2 Radiation

As was the case for scattering, the amount of published data suitable for
validating our formulation and associated code is quite scarce. There are
various approximate cavity models available for coated cylinders and even
some measured data [16, 17, 18]. However. there is no cavity-backed patch
antenna data vet available. Nonetheless, we may compare our results with
planar results for an initial validation.

Figure 10 compares the co-polarized antenna pattern for a dcm x dcm
patch antenna in a 6cm x Sem X 0.0795cm cavity recessed in a metallic cylin-
der whose radius is allowed to vary. The substrate’s permittivity is €, = 2.32
and the feed point is at (ap, = 2cm, 2, = lcm) relative to the center of the
patch. The small glitches in the curves associated with the small radius cylin-
der is due to the far-zone formulas (34) and not due to the FEM formulation.
The series (31) rely on delicate cancellations which are difficult to achieve
numerically. Nevertheless, the agreement between the planar result and the
case where the cylinder of radius 100 cm (= 10\ at 3.17 GHz) is excellent.
Clearly. curvature has no effect on the forward direction (¢ = 0°) but the
curvature effect is pronounced at ¢ = 90°. We believe that this broadening
of the pattern as the radius decreased may be explained by considering the
apparent size of the patch when observed at (¢ = 0°,8 = 90°). As the radius
of the cvlinder decreases, the patch’s planar projection becomes smaller re-
sulting in a broader pattern. Another concern for an antenna designer is the
effect of the cavity termination on the radiation patterns. Figure 11 shows
the gain pattern for the same patch placed on cavities whose azimuthal ex-
tend varies from 65° to 360° (wraparound). Obviously, near the resonant
frequency, the effect of the cavity termination edges 1s only apparent near
o = 180° provided the cavity is small. For this test. the patch occupies 45°
of the cavity and hence the 65° cavity has only 7.5° (or 6.5 mm) to spare
on either side of the patch. Larger cavities are associated with higher gain
in the rear direction (¢ = 180°) possibly due to creeping wave effects. The
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Figure 10: Co-polarized antenna patterns for a 4cm x 3cm cm patch antenna
on a 6cm x 5cm x 0.0795cm cavity fed at (ad, = 2cm,z = lcm) relative to
the center of the patch. The cavity is filled with ¢, = 2.32 dielectric and the
radius of the cylinder is allowed to vary.
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backward gain is of interest to low observable antenna designs and we note
that planar approximations are of no use for such antenna designs since there
is no backward radiation.

In addition to radiation patterns. designers are interested in input impedance
calculations. Figure 12 compares our result for a quasi-planar patch and vali-
dated data for the planar patch antenna considered previously. Also shown is
the input impedance calculated as a function of frequency for a highly curved
cvlinder (a = 5 cm). The decrease in the input resistance is typical of curved
patches (see for example [16]) and we note that the resonant frequency has
not moved consistent with 7"1/y; mode excitation. \We are currently pursuing
the validation of our code with reference measured data for curved patches.

7 Future Work

In this report. we have presented a FEM-BI formulation suitable for cavity-
backed antennas which are recessed in a circular.metallic cylinder. Along
with the formulation. we presented an implementation strategy which mini-
mizes both computational and storage demand. Key to this goal was the use
of asymptotic formulas for the dvadic Green's function and the use of the
FFT-based matrix-vector product in the BiCG solver. The resulting com-
puter program has been validated, to the extent possible, for both scattering
and radiation problems.

In the near future, we want pursue further validation of the written FEM-
BI code by comparison with measured data for curved cavity-backed anten-
nas. This will be the first such comparison available to the electromagnetics
community and hence will form an important resource for future work. Upon
establishing full confidence in our implementation, we will then be able to
study effects due to patch and cylinder of curvature on antenna parameter
and scattering properties. We believe that the numerical laboratory de-
veloped herein will provide a powerful tool for the analysis and design of
conformal antenna arrays on curved surfaces.

Having produced a code suitable for antennas mounted in metallic sur-
faces, we want to continue this study for coated structures. The FEM-BI
method will allow accurate computation of the input impedance, radiation
patterns, scattering for large complex antennas mounted on inhomogeneous
substrates. Another possible implementation could use Absorbing Bound-
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ary Conditions (ABCs) for mesh termination thus retaining a sparse system.
However. the accuracy of FEM-ABC formulations for input impedance cal-
culations have to be established and this will be an important part of this
investigation.






Appendices
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A BiCG Algorithm

The biconjugate gradient (BiC'G) algorithm is one member of a family of iter-
ative solvers which have proven useful in computational electromagnetics [20].
The BiCG unlike the conjugate gradient (CG) method does not guarantee
convergence but does have the advantage of utilizing only one matrix-vector
product in its symmetric implementation. Although the convergence char-
acteristics of the BiCG algorithm is erratic (see for example figure A-1), it
often converges in fewer iterations than the C'G algorithm. This appendix
iists the BiC'G algorithm appropriate for use with svmmetric matrices [21].

Consider the system
[Al{a} = {b} (A-1)

where [A] is a symmetric matrix, {x} is the unknown data vector and {b}
1s the excitation data vector. The BiC'G pseudocode follows (assuming an
initial guess {r}, which may be {0}:

[nitialize:

{rh = {0} = [A]{a},
{rh {6} = [A]{=}

1

[terate:
<{r},.{r} >
<[Al{p}, . {p}; >
{ehi = {2}l +aa (),
{r}asi = {r}.—a.[4]{p},
< {7‘}n+1 , {7'}:14-1 >
<{rl.. {r}. >
{P} = {r}pi + e {pha (A-2)

where the Euclidean norm is given by

an

Ch =

M
<Az} {8} > = > 2[m]b[m] (A-3)

m=1
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In {A-2) the subscripts refer to the iteration and the syimbol ™" denotes
complex conjugation. Many termination criteria have been used in the past.
One of the most popular is

< {rha Arbae >
< {b}.{b} > -

€ (A-1)

where ¢ < 0.01 is a typical acceptable tolerance. As can be expected, the
tolerance may need to be tightened or relaxed depending on the problem at
hand and the desired accuracy of the result. Note that € should be kept small
for antenna impedance computations but can be relaxed for scattering and
racdiation pattern calculations.






B FFT-based Matrix-Vector Product

The numerical solution of integral equations (IE) (or boundary integrals)
is often performed by converting the IE into a linear system of equations
using the method of moments (MoM) procedure. The Mo)l solution often
requires the generation and storage of O(N?) matrix entries and, if a direct
solver such as LU decomposition is utilized., O(N?) operations are required,
where N is the number of unknowns. If an iterative solver such as the
biconjugate gradient (BiCG) method is used. the solution can be found in
O(r -7 - N?) operations where r is the number of right-hand sides and 7 is
the number of iterations per right-hand side. However. for circulant or block
circulant matrices, the solution may be reached in O(r-i-Nlog.V') operations.
This requires the use of FFTs for computing the matrix-vector products in
the BiCG algorithm and consequently the resulting solution scheme is often
referred to as the BiCG-FFT method. In this appendix, we will present
specific examples of this efficient technique for 2-D and 3-D geometries. We
will first Jook at the relatively straightforward 2-D problem followed by the
necessarily more involved 3-D case.

B.1 2-D Integral Equations

Suppose a flat resistive strip centered at the origin of the y=0 plane is excited
by an E-polarized (T A, ) plane wave as shown in figure B-1. The appropriate
Electric Field Integral Equation (EFIE) may be formed by enforcing the
resistive transition condition on the strip giving

E'(z) = R(z)J.(z) + %/_— Jo(z ) H!P (kolr - ;r’|) dz’ (B-1)

2
where E*(z) is the incident electric field. R(z) is the normalized resistivity as
a function of lateral position. J.(z) is the equivalent electric current on the
strip induced by the incident field and &, = 2\—: is the free-space wavenumber.
The time dependency e’** is assumed and suppressed. In (B-1), the primed

coordinate denote the source point while the unprimed ones indicate the test
point. Once the current has been determined by solving (B-1), the scattered
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field in the far-zone is given by

[,:(O) N 6 )p—— { [b __ ' )ko.r Cosn:| (8—2)

where Z, is the free-space intrinsic impedance.
We proceed with the numerical solution of (B-1) by expanding the un-
known current in terms of subdomain basis functions as

N-1
J.(x) = Z J[n]i () (B-3)
n=0
where
W.(x) = Wr) ndr - % <ar<(n+1)Axr - l—:
= 0 else (B-4)
and Ar = . The weight functions W () may assume various forms, one of

the qlmpleqt bemg a pulse (W (x) = 1). Substituting (B-3) into (B-1) and
performing Galerkin's testing, we obtain

/_ Wo(e)E! (a)de = ZJ[n {/’ VE(r)R(r)dz|  +

w

/ W)W (2 ) HD (k|2 — '|)d:r'dx}
4 -y /-y
(B-5)

wle

wlg

2

which is the discrete form of the integral equation. When pulse basis func-
tions are used, (B-5) becomes

(n+1)az-% N-b .. f(n+1)Ar-%
/ El(z)dz = z Jn ]{5[12 —n ]/ . R(z)dz +
" n'=0 Bl

Ar—%

ko (n+1)Azr-% /(n +1jAzr-
n

*HO (ke — o' |)dz dx}

/
Ar-%

4 nAx—-% -

(B-6)
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where the INronecker delta function

6[1)—71'] = 1 n=n

0 n#n (B-7)

has been introduced. Assuming that the resistivity is constant within a
segment (e.g. R[n] = R(x) for nAzr < r < (n + 1)Azr) and making the
change of variables £ = x + %,f' =z + £, we have

N-1

/7|n+1)Ax E! (5 - %) e = J[n']{R[n}_\..z-é[n — ]+

1Ar ’
n =0
ko (n+1)Ar (71’4'1)Ar (2) ' '
S [T T ke - € )de de
nAr n Ar
(B-8)

We now observe that the double integral is in convolutional form and since
the segments are of uniform length (Ax), we may introduce the discrete
function

H® (k|z — 2'))de'd¢  (B-9)

’ k, [ntDar p(n'41)ar
gln—n] = /

4 Joar JAr
and rewrite (B-8) as

(n+1)Ar N-1 , ' N-d ' '
/n ENE)dE = Ax ) J[n]R[njén-n]+ Y Jnlgln —n]

A
o n' =0 n'=0

(B-10)

The first sum in (B-10) is recognized as the product of a diagonal matrix
(AzR[n]é[n —n']) and the unknown data vector (J[n'],n =0,1,2,..,N-1)
where as the second sum is a truncated.discrete linear convolution.

The discrete form of the IE (B-10) may be written as a matrix equation

(21{J} = {/} (B-11)

where the excitation vector entries are given by

f) = [ E (- ) de (B-12)

Ar &
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and the impedance matrix is given by
Znn'] = ArR[n)é[n — w4 g —n) (B-13)
Alternatively. in preparing to take advantage of the convolution property,
we may rewrite (B3-10) as
(A RInJ8[n = 01| {7} + [gln = )] {1} = {/) (B-14)

Obviously, the first matrix-vector product can be trivially computed in N
operations

yln] = SPm]AxRN] n=0.1.2....N =1 (B-15)

but the second matrix-vector product involves a fully populated matrix and
would thus normally require O(N?) operations for its execution. However,
since g[n — n'] is a discrete convolution operator. the product may be com-
puted in only O(NlogN') operations by invoking the discrete convolution
theorem

{7} [oln =] = HINIFR {Fo{J} ¢ F {3}}  (B-16)

where o denotes a Hadamard product and the discrete Fourier transform
(DFT) pair is given by

. AM-1 .
fp{f[m]} = > flm]erwme
m=0
R 1 Al -1 R o
P} = 5 X Flgesim (B-17)
9=0

The pulse operator H[N] indicates that only N of a possible 2V — 1 values of
the discrete convolution are retained. Also, the DFT (and its inverse) operate
on periodic sequences of period M (all sequences with a tilde are periodic in
this appendix). In (B-16), the DFTs must be of length Af > 2N — 1 since
a minimum of 2N — 1 entries are needed for the complete specification of
g[n —n') as n and n" vary from 0 to N — 1. The unknown iterate (J?) is
given by ‘

JPn] = Jn] n=0,1,2,... N —1
0 a=NN+LN+2 . M-l (B-18)
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N . . -
whereas the Green's function sequence 1s givell by

gnl = g(n] n=0.1.2,....N=1
=0 n=:\’,:‘\’+1.;\1+'2,...,‘7—1
M M M )
= gM-n] n= LT A2 M1 (B

&~

and we have assumed that g[n -n] = g[n' — n]. Note that in (B-19), if
A > 2N —1itis necessary to pad §[n] with zeros in the middle of the sequence
as shown. Also. only the first row(column) of the Green's function matrix
([g[n - n']]) need be explicitly computed since this is a Toeplitz matrix thus
ensuring low O(\) memory demand. In generating the Green’'s function
sequence, typically the first segment (left most) is used as a source while
the non-periodic sequence (g[n]) computed by testing at all segments (e.g.
let n° = 0.n = 0,1,....8N = 1). Thus all test segments are to the right of
the source segment. If this sequence did not have the symmetry property

(gln = n] = g[n' = n]), the interactions with test segments which are to
the left of the source would need to be computed explicitly. Alternatively,
if the sequence possessed anti-symmetry (g[n — n'] = —g[n' — n]), periodic

replication is still possible with the following modification to (B-19)

gln) = glnl n=012..N-1
M
=0 n=NN+LM+2..,5 —1
MM M i
= —g[M-n] n=5,5+ Lo 42, M=1 (B-20)

Combining (B-15) and (B-16), the matrix vector product in the iteration
cycle of the BICG-FFT method is efficiently computed as

(Z]{J*} = Az {J”[n]R[n]}+H[!\’].7-',3‘{.7-'D{J”}ofp{fi}}(B—‘.Zl)

This computation requires O(N + (M) log, (M) operations provided radix-2
FFTs are used in (B-21) and should be compared to the standard matrix
vector product

(Z){J?P} = NfJP[n‘]Z[n,n’] n=0,1,2..,N-1 (B-22)

n'=0
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Number of Unknowns (N)

Figure B-2: Comparison of operation count for a full matrix-vector product
verses a FFT-based matrix-vector product.
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Figure B-2 illustrates the comparison between (B-22) and discrete convolu-
tion (B-21) computed using radix-2 FFTs. Clearly, for N 2 30, (B-16) is
more efficient than (B-22).

Another 2-D geometry which vields systems which may be converted into
circulant matrices is the circular strip such as the one shown in figure B-3.
The EFIE for a resistive circular strip is given by

fo-0
sin ( 5 )

where a is the radius of the arc and a is the subtended angle. Note that if

the arc is closed. the a = 360°. A discrete form of (B-23) may be obtained

by using pulse basis and uniform zoning (o = £). We have

l\'- % '
Filo) = RioMlo)+ 2 [ gl (‘Zkoa

) dé do
(B-23)

4

(n+1)Ae . N=1 , ,
/ El(o— %)do = Y Jn ][R[n].\oﬂn —-n|+
nioe

n'=0
k, (n+1)de pin +1)A¢ _ - & .
o / H(Sz) 2k, alsin $-¢ do do
1 Juae n' Ao 2
(B-24)
which is similar to (B-8). The entries of the Green's function matrix are
given by
, k,a [(rt1)30 (n +1)20 . b — b ,
gln—-n] = Zod / H® (‘Zkaa sin (¢ - ¢ ) ‘) do do
4 nA¢ n' Ad 2

(B-25)

Indeed, (B-24) may be solved in exactly the same manner as (B-8) using
FFTs. The only difference between the flat strip and the circular arc is a
possible additional symmetry present in the Gireen's function sequence. If
the arc is closed (a = 360°), we find that

|z

g[N-n] = g[n] n=123, .5~ 1 (B-26)

which indicates that % + 1 entries of the sequence need be computed rather
than N. Therefore, the solution of (B-24) for a = 360° requires roughly
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Figure B-3: Circular arc geometry.
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half the number of matrix entry evaluations as compared to an equal length
tlat strip. For a < 360°. a similar symumetry exists to a lesser extent as
long as a > IN0". In this case. although the Green's function sequence (B-
25} 1s periodic, it is incorrect to assume that (B-21) now involves a circular
convolution. The convolution is still a truncated.linear.discrete convolution
and in practice the additional symmetry of (B-26) is not exploited unless
matrix build time is excessive.

B.2 3-D Integral Equations

As was the case for 2-D geometries, there are certain 3-D geometries which
admit efficient solution methodologies by making use of the FFT-based im-
plementation of matrix-vector products. Three of these geometries are the
flat plate. an impedance insert in a ground plane and an impedance insert in
an infinite metallic circular cyvlinder. These geometries are shown in figure B-
4. We shall now proceed with the formulation for the later two problems (e.g.
the planar and cylindrical inserts) using a general coordinate system. In the
following. the general coordinates (u,r) may be considered as (u=z,v=1y)
for the planar case and (u = ao.v = 2) for the cvlindrical case.
An integral equation may be obtained by enforcing the standard impedance

boundary condition (SIBC)

nxnx [f(u.v) = —nZ,n x 17(u.v) (B-27)
where 71 is an outward directed unit normal and the total magnetic field is
given by

ﬁ(u. ) = ﬁg"’(u. v) +
jA-o}-;,/ﬁg(u — ;v =) [ x E(u',v)] du'dv'(B-28)
S
where S denotes the surface of the insert. In (B-28), the geometrical optics
fields H9°(u,v) is comprised of the incident field H'(u,v) and the reflected

field H(u. ). For the planar geometry, the second kind Green's function is
given by

’

Gyolu—u,v— v') = 2G,(u—u

VVJ e IkoV/ (u=u' P+ (v=0")?
Hlam flu =) 4 (v - v')?
(B-29)

.v—'v')=2[7+

o
(™)



Figure B-2 illustrates the comparison between (B-22) and discrete convolu-
fhan (B-21) computed using radix-2 FFTs. Clearly, for N > 30, (B-16) is
moe eflicient than (B-22).

Axother 2-D geometry which yvields systems which may be converted into
circulaht matrices is the circular strip such as the one shown in figure B-3.
The EFIE for a resistive circular strip is given by

. (o—o
sin ( 5

where a is the radius &f the arc and a is the subtended gngle. Note that if
the arc is closed. the a X 360°. A discrete form of (B-23) may be obtained
by using pulse basis and Okiform zoning (Ao = £). We have

k,a

Bie) = Weio) + 528 [F e (2ha

) dé do
(B-23)

(n+1)A0 o NX1 , ,
/ E(o—- 7)o = [n ][R[11]Ao§[71 n|+

A
1ae n'=0

koa NS (n' +1f20
/ H? (‘Zkoa
n

4 Jnae ‘A

in(#55) ) 4

(B-24)

which is similar to (B-8). The entries o .he Green's function matrix are
given by

, X (n+1)Ae  p(n +1)24 — & ,
gln—-n] = koa / Hiﬂ (‘Zko sin (¢ 5 ¢ ) ‘) do do

T nA¢ U Ag
(B—25)

~

Indeed, (B-24) may be solved in exactly the same maRner as (B-8) using
FFTs. The only difference between the flat strip and the circular arc is a
possible additional symmetry fresent in the Green's function sequence. If
the arc is closed (a = 360°), we find that

gIN=n) = g¢g[n] n= 1,‘2,3,...,% -1 (B-26)

which indicates that % 1 entries of the sequence need be computed rather
than N. Therefore, the solution of (B-24) for a = 360° requires\roughly
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Figure B-4: 3-D geometries: (a) flat impedance insert in a groundplane (or
impedance plate in free-space) (b) impedance insert in a circular cylinder

(2a = Ag).
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where G, is the free-space dyadic Green's function and T = i&+ijj+ 32 isthe
idem factor. For a cvlinder. the appropriate Green's function is available as
an eigenvalue series (8] for small radius cylinders or as a creeping wave series
[9] for large radius cylinders. Irrespective of the form of (',. upon making
use of (B-2%) into (B-27). we have

nox ox E(u,v)
n
Jhont % /—C_jg(u - v - v') A x 5(11’. v')] du' dv’
s
(B-30)

—Z.ax H?(uv) =

We note that for planar geometries. an appropriate right-handed system is
(. &. 1) whereas for cylindrical problems. the right-handed system is given
by (f.4.&). Upon expanding the fields (E. 179°) and the dvadic Green’s
function (ﬁz) in terms of tangential components (i, ), (B-30) yields the
following coupled set of integral equations

E.(u.v
a: Z, P (ue) = __(_u_1_)+

]
jka/ [Eu(ul, v’) T4 (u — ul, v — v') -
S
Eu(u',v’)(,v'“”(u —uv— v')] du'dv’

U —Zo[{{(io(uql‘) = _—Eu(ll,’L?) +

’

U
jkf:/ [Eu(ul~l’l)6wu(u — u',v —v)—
)

’

E,(u ,vl) ST u v — 'v')] du’ dv{B-31)

To convert (B-31) into a discrete set of equations, we expand the unknown
electric field components in terms of subdomain basis functions

Ny=3N,-2
E.(u,v) = Z z E.[t.s|WE(u,v)
t=0 s=0
No=2N.,-3
Eju,v) = Y > E,[t.s]W(u,v) (B-32)
t=0 s=0

o4



where .V, denotes the number of nodes in the d-direction and N, is the
number of nodes in the ¢-direction. As shown in figure B-5. / denotes the
row number of the edge discretization and s is the column number. For this
example, the unknowns are associated with the free-edges and the associated
basis functions may be represented as

”'Ii"(u.l') = M tf local edge =1
(ve — vp)
= Ln=v) 1 f local edge =2
(vy — 1)
0 ¢ lse
Wi ) = u 1 f local edge = 3
(uy — wy)
(v —wy) .
= ———= f local edge = 4
(u, — )
0 else (B-33)

where the local edge numbering is illustrated in figure B-6. Note that a free
edge is one that is not tangential to any metallic walls and that use of (B-33)
requires a finite element type assembly. For the discretization shown in figure
B-6. there are (N, — [)(N, — 1) elements and a total of 2N, N, — N, 4+ N
unknowns. Of these. (N, — 1)(N, — 2) unknowns are associated with the
u-directed field while (N, — 2)(N, — 1) unknowns represent the t-directed
field.

Substituting the field expansions (B-32) into the coupled integral equa-
tions (B-31) and employing the Galerkin's testing procedure. we have

Ne-3N,-2

Flts) = 3 3 EJft.s)gult—t,s—s]+
t'=0 aI=O
Nu=2 Ny=3
Z Z E,,.[t’,.s']gw[t — 1 s = s'] t=0,1,2.....N, -3
t'=0 s'=0
$=0,1,2.....N, =2
N -3 N,=2
F.lt.s] = Z Z E,L[tl,s’]gm‘[f —t, s — 5/] +
t'=0 s'=0



N - 3
v
T 4
2 r
1 * T
t =0 ‘ ("ﬁ—‘
|
s= 0123 N - 2
(a)
pv
N,- 2
3| 4
2
1l
t =0
s = 0123 N, -3
(b)

Figure B-5: Rectangular patch discretization: (a) u-directed edges (b) v-
directed edges.
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Figure B-6: Local edge numbering scheme.

57



Ne=2N,-3

Y Y E s Tgult - s - ST =012,V =2

t'=0 s'=0
s=0.1.2.....N, =3
(B-34)

where

gult =t s =51 = _Ole=ed 1o e W], dude

nle] Jse “z
—k, / ./:, MW ()G (v - v v — v )du de dude
' i 6 — € ' ' .

Juolt =t .5 — s] = __k_[_]_e_] g Wl o) (usv)| ududv

+jk, / / (u' 0 )Wy (u, v)G™ (u — W v — v )du'dv' dudv

[

gt =t s =51 = jk //3 (0 V()G — o v — o' ) du’ dudv
gult =t s—s] = ]L'OL/S Wo(u' o) '/l.(zt,t7)G””(u—u'.v—v')du'dv'dudv
Flt.s] = Z, / W (. v) HE (e, v)dudy
Ft.s] = —Z, | W W, v) H8 (u, v)dudv (B-35)

Se

and e refers to the test element while ¢ denotes the source element. We
note that each of the double sums in (B-34) is a truncated,discrete linear
convolution and hence amenable to the BiCG- FFT method.

To proceed, we define the 2-D DFT pair (analogous to (B-17))

Mi-1M;-1

Fao {fltsl} = X 3 flt,slemmimer
t=0 s=0
. M,-1AM-1 . (s
Fip {Fla.pl} = \1. iR & o flo ple’™mE T (B-36)
t=0 s=0

Using (B-36), the convolutions in (B-34) can then be rewritten as
AMi=1 M;-1

S S El,slglt—ts =51 = Fp {Fan {Elts]} ¢ Fap {gltss]})

t'=0 s'=0
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(B-37)

The order of the relevant DI'Ts must be M, > 2(number of rows) - 1 and
My 2 2(number of columns) - 1 where the number of rows and columns
of the discretization may vary with each convolution (see figure B5). For
example. the first convolution in (B-34) is associated with u-testing and
u-source edges and hence the number of rows and columns is (N, —2) and
(.Vu—1). respectively. The ficld sequences are loaded into a M, x M, array in
row /column order of the ficld discretization and the remaining entries form
a zero pad. The Green’s function sequence must be loaded into a similar
array (in the same manner) and periodic replication must be performed to
provide the necessary “negative lags™. If the sequence has the property.,
gt =t s =~ =gt — 1.5 - s]. then this replication process takes the form

glis) = glts) o<r< 0.
= M 42— 1] Dcrcan-1o0c.c
= glt. My +2 — 5] OStS%—IA‘—)IQSsSAIQ—I
= g 42— AL+ 2~ ] iflgzg;\[,—l %5352112—1

-

(B-38)

For the presented example. g,,[t.s] and g¢,,[t. s] possess this property while
the cross-terms, gy,[t,s] and g,,[t.s], do not. If anti-symmetry is present
then a more complex replication scheme similar to (B-20) may be used.
Otherwise. all possible lags must be computed requiring longer matrix build
time since more than the first @-directed and ¢-directed edges need be used
as sources.

Once the periodic arrays are loaded, the required matrix-vector product
for the dd-interactions may be performed in O((Af, log M, )( M,logMM,)) op-
erations rather than the O(((N, — 2)(N, — 3))?) operations required for a
standard matrix-vector product. The comparison is shown in figure B-7 with
My = 2N, -3), M =2(N, —2)and N, = N, = N. Clearly, when the
number of nodes per side exceeds 10-15, the FFT-based matrix-vector prod-
uct is more efficient than a conventional matrix-vector product. In practice,
the FFT-based product is more efficient than a standard product in terms
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Figure B-T: Comparison of operation count for a full matrix-vector product
verses a FI'T-based matrix-vector product. N is the number of nodes in each
direction of the grid, A, = 2(N-3) and M; = 2(N-2).
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of wallclock time for N < 10 since in order to exploit the memory savings
alforded by uniform zoning of a convolutional kernel without using FFTs. ad-
ditional overhead is incurred to match the appropriate matrix entry with the
correct vector entries. Similar results are obtained for the other convolutions

m (B-34).

C Replication Rule (Fortran)

This appendix contains the Fortran source code which performs the periodic
replication of the four components of the boundary integral sub-matrix. It
is included to illustrate the special care required for the cross-terms (0 — =

and : — o) as opposed to the application of (I3-38) for the like-terms (0o—o
and z — z).
c

¢ Augment the arrays
.
N
¢ Provide negative lags for like-terms
¢
Do row = lL.rowFFT
Do column = 1,colFFT
If((row.LE.rowFF‘T/‘Z).AND.(Column.LE.ColFFT/?_)) Then
¢ First quadrant. do nothing ...
Elself((row.CT.rowFFT/?).AND.(column.LE.colFFT/?)) Then
¢ Second quadrant
gUU2D(row.column) = gUU2D(rowFFT +2-row,column)
gVV2D(row.column) = gVV2D(rowFFT+2-row,column)
Elself((row.LE.rowFFT/2).AND.(column.GT.colFFT/2)) Then
¢ Third quadrant
gUU2D(row.column) = gUU2D(row.col FFT+2-column)
gV'V2D(row,column) = gVV2D(row.col FFT+2-column)
Else
¢ Fourth quadrant
gUU2D(row.column) =
gUU2D(rowFFT+2-row,col FFT42-column)
gVV2D(row,column) =
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g\'\".ZD(l‘owFI"'l'—+—2-row.coll—"F'l‘+‘2-column)
Endlf
EndDo
FndDo
.
c Special treatment for cross-terms
.
[f(.NOT. wrapAround) Then
Do row = 1,rowFFT/2
Do column = L.colFFT/2
c
¢ Replicate for UV
c
¢ Fourth quadrant from first quadrant
gl,'\"'l(l(rowFFT—{—1—1‘0\\'.COIFFT+l-column) =
gU\V2d(row.column)
¢ Second quadrant from first quadrant
gl'\'?.(l(rowFFT—i—l-row.column) = -guv2d(row.column)
c
¢ Replicate for VU
c
¢ Fourth quadrant from first quadrant
g\"U‘Z(l(rowFFT+1-row,colFFT+l-column) =
gVU2d(row.column)
¢ Third quadrant from first quadrant
g\”'U'Zd(row,colFFT+l-column) = -gVU2d(row,column)

EndDo
EndDo
¢
Do row = 1.rowFFT/2
Do column = 1,colFFT/2
c

¢ Now mirror into first and third quadrants for UV

c .

¢ First quadrant from second quadrant
gUV2d(row,column) = {0.0D0,0.0D0)
gUV2d(row,column) = -gUV‘Zd(rowFFT-l—row,column)
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¢ Third quadrant from fourth quadrant
gUN2d(row.colFIF'T+1-column) =
-gUV2d(rowFEFT-1-row.colFFT+1-column)

Now mirror into first and second quadrants for VU

A A A A

First quadrant from third quadrant
gV U2d(row,column) = (0.0D0,0.0D0)
gV U2d(row,column) = -gVU2d(row.col FFT-1-column)
¢ Second quadrant from fourth guadrant
gV U 2d(rowFF T4+ L-row.colunin) =
-V U2d(row FET+ [-row.col FFT-1-column)
EndDo
EndDo
Else
¢ WRAPAROUND CAVITY
Do row = lL.rowFFT/2
Do column = 1,colFI'T/2
c
¢ Replicate for UV
c
¢ Fourth quadrant from first quadrant
gUV2d(rowFFT+1-row,col FFT+1-column) =
gUV2d(row.column)
¢ Second quadrant from first quadrant
gUN2d(rowFFT+1-row,column) =
gUV2d(row,guvColMax+1-column)
c
¢ Replicate for VU
c
¢ Fourth quadrant from first quadrant
gVU2d(rowFFT+1-row,colFFT+1-column) =
gVU2d(row,column)
¢ Third quadrant from first quadrant
gVU2d(row,colFFT+1-column) = -gVU2d(row,column)
EndDo
EndDo
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Do row = lL.rowFFT/2
Do column = 1,colFFT/2
¢
¢ Now mirror into first and third quadrants for UV
C
¢ First quadrant from second quadrant
gl V2d(row,column) = (0.0D0,0.0D0)
gUV2d(row.column) = -gUV2d(rowFFT-1-row,column)
¢ Third quadrant from fourth quadrant
gUV2d(row.,colFI'T+1-column) =
-gUV2d(rowFFT-1-row.colFFT+1-column)
c
¢
¢ Now mirror into first and second quadrants for VU
c
¢ First quadrant from third quadrant
gV U2d(row,column) = (0.0D0,0.0D0)
gVU2d(row.column) =
gVU2d(row,colFFT-gvuColMax + column)
¢ Second quadrant from fourth quadrant
gVU2d(rowFFT+1-row,column) =
gVU2d(rowFFT+1-row,col FFT-gvuColMax + column)
EndDo
EndDo
EndIf
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